Artificial Rainfall
نویسنده
چکیده
In many regions of the world traditional sources and supplies of groundwater, rivers and reservoirs are either inadequate or under stress from increasing demands on water from changes in land use and growing population. The ability to influence and modify cloud microstructure in certain cloud systems has been demonstrated and verified in laboratory, modeling, and observational studies. Cloud seeding for precipitation enhancement has been used as a tool to help mitigate dwindling water resources. Weather modification activities to enhance water supplies have been conducted for a wide variety of users including water resource managers, hydroelectric power companies, and agriculture. Many operational programs have been ongoing and have increased in number in the past ten years. Despite this, there is still a need for continued and more intensive scientific studies to further develop the scientific basis for this technology.
منابع مشابه
Artificial neural network technique for rainfall temporal distribu-tion simulation (Case study: Kechik region)
Artificial neural networks (ANNs) have become one of the most promising tools for rainfall simulation since a few years ago. However, most of the researchers have focused on rainfall intensity records as well as on watersheds, which generally are utilized as input records of other hydro-meteorological variables. The present study was conducted in Kechik station, Golestan Province (northern Iran...
متن کاملRainfall-runoff modelling using artificial neural networks (ANNs): modelling and understanding
In recent years, artificial neural networks (ANNs) have become one of the most promising tools in order to model complex hydrological processes such as the rainfall-runoff process. In many studies, ANNs have demonstrated superior results compared to alternative methods. ANNs are able to map underlying relationship between input and output data without prior understanding of the process under in...
متن کاملThe efficiency of Artificial Neural Network, Neuro-Fuzzy and Multivariate Regression models for runoff and erosion simulation using rainfall simulator
1- INTRODUCTION According to the complexity of environmental factors related to erosion and runoff, correct simulation of these variables find importance under rain intensity domain of watershed areas. Although modeling of erosion and runoff by Artificial Neural Network and Neuro-Fuzzy based on rainfall-runoff and discharge-sediment models were widely applied by researchers, scrutinizing Arti...
متن کاملPrediction of monthly rainfall using artificial neural network mixture approach, Case Study: Torbat-e Heydariyeh
Rainfall is one of the most important elements of water cycle used in evaluating climate conditions of each region. Long-term forecast of rainfall for arid and semi-arid regions is very important for managing and planning of water resources. To forecast appropriately, accurate data regarding humidity, temperature, pressure, wind speed etc. is required.This article is analytical and its database...
متن کاملRegional Rainfall Forecasting using Large Scale Climate Teleconnections and Artificial Intelligence Techniques
This paper presents an Artificial Intelligence approach for regional rainfall forecasting for Orissa state, India on monthly and seasonal time scales. The possible relation between regional rainfall over Orissa and the large scale climate indices like El-Niño Southern Oscillation (ENSO), EQUitorial INdian Ocean Oscillation (EQUINOO) and a local climate index of Ocean-Land Temperature Contrast (...
متن کاملOptimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network
Rainfall forecasting plays many important role in water resources studies such as river training works and design of flood warning systems. Recent advancement in artificial intelligence and in particular techniques aimed at converting input to output for highly nonlinear, non-convex and dimensionalized processes such as rainfall field, provide an alternative approach for developing rainfall for...
متن کامل